Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer.
نویسندگان
چکیده
Gefitinib (Iressa) is a specific and effective epidermal growth factor receptor inhibitor. An understanding of the downstream cellular targets of gefitinib will allow the discovery of biomarkers for predicting outcomes and monitoring anti-epidermal growth factor receptor therapies and provide information for overcoming gefitinib resistance. In this study, we investigated the role and regulation of FOXM1 in response to gefitinib treatment in breast cancer. Using the gefitinib-sensitive breast carcinoma cell lines BT474 and SKBR3 as well as the resistant lines MCF-7, MDA-MB-231, and MDA-MB-453, we showed that gefitinib represses the expression of the transcription factor FOXM1 in sensitive, but not resistant, cells. FOXM1 repression by gefitinib is associated with FOXO3a activation and is mediated at the transcriptional level and gene promoter level. These results were verified by immunohistochemical staining of biopsy samples from primary breast cancer patients obtained from a gefitinib neoadjuvant study. We also showed that ectopic expression of an active FOXO3a represses FOXM1 expression, whereas knockdown of FOXO3a expression using small interfering RNA can up-regulate FOXM1 and its downstream targets polo-like kinase, cyclin B1, and CDC25B and rescue sensitive BT474 cells from gefitinib-induced cell proliferative arrest. These results suggest that gefitinib represses FOXM1 expression via FOXO3a in breast cancer. We further showed that overexpression of a wild-type FOXM1 or a constitutively active FOXM1, DeltaN-FOXM1, abrogates the cell death induced by gefitinib, indicating that FOXM1 has a functional role in mediating the gefitinib-induced proliferative arrest and in determining sensitivity to gefitinib. In summary, our study defined FOXM1 as a cellular target and marker of gefitinib activity in breast cancer.
منابع مشابه
The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells.
Gefitinib is a specific inhibitor of the epidermal growth factor receptor (EGFR) that causes growth delay in cancer cell lines and human tumor xenografts expressing high levels of EGFR. An understanding of the downstream cellular targets of gefitinib will allow the discovery of biomarkers for predicting outcomes and monitoring anti-EGFR therapies and provide information for key targets for ther...
متن کاملIncreased Expression of Forkhead Box M1 Is Associated with Aggressive Phenotype and Poor Prognosis in Estrogen Receptor-Positive Breast Cancer
Fox transcription factors play a critical role in the regulation of a variety of biological processes. While FoxM1 behaves like the oncogenic transcription factor, FoxO3a is known as a tumor suppressor by inhibiting FoxM1. This study aimed to investigate the clinicopathological significance of FoxM1 and FoxO3a expression in breast cancer. Expression of FoxM1 and FoxO3a were analyzed by immunohi...
متن کاملCasticin induces breast cancer cell apoptosis by inhibiting the expression of forkhead box protein M1
Casticin is an active ingredient derived from Fructus Viticis, a traditional Chinese medicine. This study aimed to investigate the role of forkhead box O3 (FOXO3a) in breast cancer cells and examine the regulatory mechanisms of FOXO3a in response to casticin treatment of the cells by ELISA, flow cytometry, small interfering RNA (siRNA) transfection and western blot analysis. Casticin treatment ...
متن کاملInsights into a Critical Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic Drug Resistance
FOXO3a and FOXM1 are two forkhead transcription factors with antagonistic roles in cancer and DNA damage response. FOXO3a functions like a typical tumour suppressor, whereas FOXM1 is a potent oncogene aberrantly overexpressed in genotoxic resistant cancers. FOXO3a not only represses FOXM1 expression but also its transcriptional output. Recent research has provided novel insights into a central ...
متن کاملOverview of tyrosine kinase inhibitors in clinical breast cancer.
Studies of cell models and profiling of clinical breast cancer material to reveal the mechanisms of resistance to anti-oestrogen therapy, and to tamoxifen in particular, have reported that this phenomenon can be associated with increased expression and signalling through erbB Type 1 growth factor receptors, notably the epidermal growth factor receptor (EGFR) and HER2. Further molecular studies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2009